Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26.126
2.
Sci Rep ; 14(1): 9045, 2024 04 20.
Article En | MEDLINE | ID: mdl-38641629

Transcranial magnetic stimulation paired with electroencephalography (TMS-EEG) can measure local excitability and functional connectivity. To address trial-to-trial variability, responses to multiple TMS pulses are recorded to obtain an average TMS evoked potential (TEP). Balancing adequate data acquisition to establish stable TEPs with feasible experimental duration is critical when applying TMS-EEG to clinical populations. Here we aim to investigate the minimum number of pulses (MNP) required to achieve stable TEPs in children with epilepsy. Eighteen children with Self-Limited Epilepsy with Centrotemporal Spikes, a common epilepsy arising from the motor cortices, underwent multiple 100-pulse blocks of TMS to both motor cortices over two days. TMS was applied at 120% of resting motor threshold (rMT) up to a maximum of 100% maximum stimulator output. The average of all 100 pulses was used as a "gold-standard" TEP to which we compared "candidate" TEPs obtained by averaging subsets of pulses. We defined TEP stability as the MNP needed to achieve a concordance correlation coefficient of 80% between the candidate and "gold-standard" TEP. We additionally assessed whether experimental or clinical factors affected TEP stability. Results show that stable TEPs can be derived from fewer than 100 pulses, a number typically used for designing TMS-EEG experiments. The early segment (15-80 ms) of the TEP was less stable than the later segment (80-350 ms). Global mean field amplitude derived from all channels was less stable than local TEP derived from channels overlying the stimulated site. TEP stability did not differ depending on stimulated hemisphere, block order, or antiseizure medication use, but was greater in older children. Stimulation administered with an intensity above the rMT yielded more stable local TEPs. Studies of TMS-EEG in pediatrics have been limited by the complexity of experimental set-up and time course. This study serves as a critical starting point, demonstrating the feasibility of designing efficient TMS-EEG studies that use a relatively small number of pulses to study pediatric epilepsy and potentially other pediatric groups.


Epilepsy , Motor Cortex , Humans , Child , Transcranial Magnetic Stimulation/methods , Evoked Potentials , Electroencephalography/methods , Motor Cortex/physiology , Evoked Potentials, Motor/physiology
3.
Brain Behav ; 14(4): e3491, 2024 Apr.
Article En | MEDLINE | ID: mdl-38641887

INTRODUCTION: Previous research has found that incidental emotions of different valences (positive/negative/neutral) influence risky decision-making. However, the mechanism of their influence on psychological expectations of decision outcomes remains unclear. METHODS: We explored the effects of different incidental emotions on the behavioral, psychological, and electrophysiological responses of individuals in risky decision-making through a money gambling task using a one-way (emotion type: positive, negative, neutral emotions) between-subjects experimental design. RESULTS: Individuals with positive emotions had significantly greater risk-seeking rates than those with negative emotions during the decision selection phase (p < .01). In the feedback stage of decision outcomes, individuals showed stronger perceptions of uncertainty in the decision environment under gain and loss feedback compared with neutral feedback, as evidenced by a more positive P2 component (i.e., the second positive component of an event-related potential). Positive emotions produced greater than expected outcome bias than neutral emotions, as evidenced by a more negative FRN component (i.e., the feedback-related negativity component). CONCLUSION: Our results suggest that positive emotions increase individuals' psychological expectations of decision outcomes. This study provides new empirical insights to understand the influence of incidental emotions on risky decision outcome expectations.


Decision Making , Motivation , Humans , Decision Making/physiology , Evoked Potentials/physiology , Emotions/physiology , Uncertainty , Electroencephalography/methods
4.
Biomed Phys Eng Express ; 10(3)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38579694

Epilepsy, a chronic non-communicable disease is characterized by repeated unprovoked seizures, which are transient episodes of abnormal electrical activity in the brain. While Electroencephalography (EEG) is considered as the gold standard for diagnosis in current clinical practice, manual inspection of EEG is time consuming and biased. This paper presents a novel hybrid 1D CNN-Bi LSTM feature fusion model for automatically detecting seizures. The proposed model leverages spatial features extracted by one dimensional convolutional neural network and temporal features extracted by bi directional long short-term memory network. Ictal and inter ictal data is first acquired from the long multichannel EEG record. The acquired data is segmented and labelled using small fixed windows. Signal features are then extracted from the segments concurrently by the parallel combination of CNN and Bi-LSTM. The spatial and temporal features thus captured are then fused to enhance classification accuracy of model. The approach is validated using benchmark CHB-MIT dataset and 5-fold cross validation which resulted in an average accuracy of 95.90%, with precision 94.78%, F1 score 95.95%. Notably model achieved average sensitivity of 97.18% with false positivity rate at 0.05/hr. The significantly lower false positivity and false negativity rates indicate that the proposed model is a promising tool for detecting seizures in epilepsy patients. The employed parallel path network benefits from memory function of Bi-LSTM and strong feature extraction capabilities of CNN. Moreover, eliminating the need for any domain transformation or additional preprocessing steps, model effectively reduces complexity and enhances efficiency, making it suitable for use by clinicians during the epilepsy diagnostic process.


Electroencephalography , Epilepsy , Neural Networks, Computer , Seizures , Humans , Electroencephalography/methods , Seizures/diagnosis , Epilepsy/diagnosis , Algorithms , Signal Processing, Computer-Assisted , Reproducibility of Results , Brain/physiopathology
5.
J Neural Eng ; 21(2)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38626760

Objective. In recent years, electroencephalogram (EEG)-based brain-computer interfaces (BCIs) applied to inner speech classification have gathered attention for their potential to provide a communication channel for individuals with speech disabilities. However, existing methodologies for this task fall short in achieving acceptable accuracy for real-life implementation. This paper concentrated on exploring the possibility of using inter-trial coherence (ITC) as a feature extraction technique to enhance inner speech classification accuracy in EEG-based BCIs.Approach. To address the objective, this work presents a novel methodology that employs ITC for feature extraction within a complex Morlet time-frequency representation. The study involves a dataset comprising EEG recordings of four different words for ten subjects, with three recording sessions per subject. The extracted features are then classified using k-nearest-neighbors (kNNs) and support vector machine (SVM).Main results. The average classification accuracy achieved using the proposed methodology is 56.08% for kNN and 59.55% for SVM. These results demonstrate comparable or superior performance in comparison to previous works. The exploration of inter-trial phase coherence as a feature extraction technique proves promising for enhancing accuracy in inner speech classification within EEG-based BCIs.Significance. This study contributes to the advancement of EEG-based BCIs for inner speech classification by introducing a feature extraction methodology using ITC. The obtained results, on par or superior to previous works, highlight the potential significance of this approach in improving the accuracy of BCI systems. The exploration of this technique lays the groundwork for further research toward inner speech decoding.


Brain-Computer Interfaces , Electroencephalography , Speech , Humans , Electroencephalography/methods , Electroencephalography/classification , Male , Speech/physiology , Female , Adult , Support Vector Machine , Young Adult , Reproducibility of Results , Algorithms
6.
BMJ Open ; 14(4): e079098, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38631828

INTRODUCTION: Electroencephalographic neurofeedback (NFB), as a non-invasive form of brainwave training, has been shown to be effective in the treatment of various mental health disorders. However, only few results regarding manualised and standardised NFB trainings exist. This makes comparison as well as replication of studies difficult. Therefore, we developed a standard manual for NFB training in patients with mental health disorders attending a psychosomatic outpatient clinic. The current study aims at investigating the conduction of a standardised manual for NFB training in patients with mental health disorders. If successful, the study provides new opportunities to investigate NFB in a more controlled and comparable manner in clinical practice. METHODS AND ANALYSIS: 30 patients diagnosed with a mental health disorder will be included. After the educational interview, patients will undergo baseline diagnostics (T0). The subsequent intervention consists of 10 sessions of NFB training aiming at increasing sensorimotor rhythm and alpha-frequency amplitudes and decreasing theta-frequency and high beta-frequency amplitudes to induce relaxation and decrease subjective stress. All patients will undergo a post-treatment diagnostic assessment (T1) and a follow-up assessment 8 weeks following the closing session (T2). Changes in amplitude bands (primary outcome) will be recorded with electroencephalography during pre-assessments, post-assessments and follow-up assessments and during NFB sessions. Physiological (respiratory rate, blood volume pulse, muscle tension) and psychometric parameters (distress, perceived stress, relaxation ability, depressive and anxiety symptoms, insomnia, self-efficacy and quality of life) will be assessed at T0, T1 and T2. Moreover, satisfaction, acceptance and usability will be assessed at T1 after NFB training. Further, qualitative interviews about the experiences with the intervention will be conducted with NFB practitioners 6 months after the study starts. Quantitative data will be analysed using repeated measures analysis of variance as well as mediation analyses on mixed linear models. Qualitative data will be analysed using Mayring's content analysis. ETHICS AND DISSEMINATION: The study was approved by the ethics committee of the Medical Faculty of the University of Duisburg-Essen (23-11140-BO) and patient enrolment began in April 2023. Before participation, written informed consent by each participant will be required. Results will be published in peer-reviewed journals and conference presentations. TRIAL REGISTRATION NUMBER: Prospectively registered on 28 March 2023 in the German clinical trials register, DRKS00031497.


Neurofeedback , Humans , Neurofeedback/methods , Pilot Projects , Quality of Life , Outpatients , Electroencephalography/methods
7.
Article En | MEDLINE | ID: mdl-38635384

Polysomnography (PSG) recordings have been widely used for sleep staging in clinics, containing multiple modality signals (i.e., EEG and EOG). Recently, many studies have combined EEG and EOG modalities for sleep staging, since they are the most and the second most powerful modality for sleep staging among PSG recordings, respectively. However, EEG is complex to collect and sensitive to environment noise or other body activities, imbedding its use in clinical practice. Comparatively, EOG is much more easily to be obtained. In order to make full use of the powerful ability of EEG and the easy collection of EOG, we propose a novel framework to simplify multimodal sleep staging with a single EOG modality. It still performs well with only EOG modality in the absence of the EEG. Specifically, we first model the correlation between EEG and EOG, and then based on the correlation we generate multimodal features with time and frequency guided generators by adopting the idea of generative adversarial learning. We collected a real-world sleep dataset containing 67 recordings and used other four public datasets for evaluation. Compared with other existing sleep staging methods, our framework performs the best when solely using the EOG modality. Moreover, under our framework, EOG provides a comparable performance to EEG.


Algorithms , Electroencephalography , Electrooculography , Polysomnography , Sleep Stages , Humans , Electroencephalography/methods , Sleep Stages/physiology , Polysomnography/methods , Electrooculography/methods , Male , Adult , Female , Young Adult
8.
Sci Rep ; 14(1): 9153, 2024 04 21.
Article En | MEDLINE | ID: mdl-38644365

Mental workload refers to the cognitive effort required to perform tasks, and it is an important factor in various fields, including system design, clinical medicine, and industrial applications. In this paper, we propose innovative methods to assess mental workload from EEG data that use effective brain connectivity for the purpose of extracting features, a hierarchical feature selection algorithm to select the most significant features, and finally machine learning models. We have used the Simultaneous Task EEG Workload (STEW) dataset, an open-access collection of raw EEG data from 48 subjects. We extracted brain-effective connectivities by the direct directed transfer function and then selected the top 30 connectivities for each standard frequency band. Then we applied three feature selection algorithms (forward feature selection, Relief-F, and minimum-redundancy-maximum-relevance) on the top 150 features from all frequencies. Finally, we applied sevenfold cross-validation on four machine learning models (support vector machine (SVM), linear discriminant analysis, random forest, and decision tree). The results revealed that SVM as the machine learning model and forward feature selection as the feature selection method work better than others and could classify the mental workload levels with accuracy equal to 89.53% (± 1.36).


Brain , Electroencephalography , Machine Learning , Workload , Humans , Electroencephalography/methods , Brain/physiology , Male , Support Vector Machine , Female , Adult , Algorithms , Young Adult , Cognition/physiology
9.
Article En | MEDLINE | ID: mdl-38648157

As an essential cognitive function, attention has been widely studied and various indices based on EEG have been proposed for its convenience and easy availability for real-time attention monitoring. Although existing indices based on spectral power of empirical frequency bands are able to describe the attentional state in some way, the reliability still needs to be improved. This paper proposed a subject-specific attention index based on the weighted spectral power. Unlike traditional indices, the ranges of frequency bands are not empirical but obtained from subject-specific change patterns of spectral power of electroencephalograph (EEG) to overcome the great inter-subject variance. In addition, the contribution of each frequency component in the frequency band is considered different. Specifically, the ratio of power spectral density (PSD) function in attentional and inattentional state is utilized to calculate the weight to enhance the effectiveness of the proposed index. The proposed subject-specific attention index based on the weighted spectral power is evaluated on two open datasets including EEG data of a total of 44 subjects. The results of the proposed index are compared with 3 traditional attention indices using various statistical analysis methods including significance tests and distribution variance measurements. According to the experimental results, the proposed index can describe the attentional state more accurately. The proposed index respectively achieves accuracies of 86.21% and 70.00% at the 1% significance level in both the t-test and Wilcoxon rank-sum test for two datasets, which obtains improvements of 41.38% and 20.00% compared to the best result of the traditional indices. These results indicate that the proposed index provides an efficient way to measure attentional state.


Algorithms , Attention , Electroencephalography , Humans , Attention/physiology , Electroencephalography/methods , Reproducibility of Results , Male , Female , Adult , Young Adult
10.
Sci Rep ; 14(1): 9221, 2024 04 22.
Article En | MEDLINE | ID: mdl-38649681

Technological advances in head-mounted displays (HMDs) facilitate the acquisition of physiological data of the user, such as gaze, pupil size, or heart rate. Still, interactions with such systems can be prone to errors, including unintended behavior or unexpected changes in the presented virtual environments. In this study, we investigated if multimodal physiological data can be used to decode error processing, which has been studied, to date, with brain signals only. We examined the feasibility of decoding errors solely with pupil size data and proposed a hybrid decoding approach combining electroencephalographic (EEG) and pupillometric signals. Moreover, we analyzed if hybrid approaches can improve existing EEG-based classification approaches and focused on setups that offer increased usability for practical applications, such as the presented game-like virtual reality flight simulation. Our results indicate that classifiers trained with pupil size data can decode errors above chance. Moreover, hybrid approaches yielded improved performance compared to EEG-based decoders in setups with a reduced number of channels, which is crucial for many out-of-the-lab scenarios. These findings contribute to the development of hybrid brain-computer interfaces, particularly in combination with wearable devices, which allow for easy acquisition of additional physiological data.


Brain-Computer Interfaces , Electroencephalography , Pupil , Virtual Reality , Humans , Electroencephalography/methods , Adult , Male , Pupil/physiology , Female , Young Adult , Computer Simulation , Brain/physiology , Heart Rate/physiology
11.
Article En | MEDLINE | ID: mdl-38598402

Canonical correlation analysis (CCA), Multivariate synchronization index (MSI), and their extended methods have been widely used for target recognition in Brain-computer interfaces (BCIs) based on Steady State Visual Evoked Potentials (SSVEP), and covariance calculation is an important process for these algorithms. Some studies have proved that embedding time-local information into the covariance can optimize the recognition effect of the above algorithms. However, the optimization effect can only be observed from the recognition results and the improvement principle of time-local information cannot be explained. Therefore, we propose a time-local weighted transformation (TT) recognition framework that directly embeds the time-local information into the electroencephalography signal through weighted transformation. The influence mechanism of time-local information on the SSVEP signal can then be observed in the frequency domain. Low-frequency noise is suppressed on the premise of sacrificing part of the SSVEP fundamental frequency energy, the harmonic energy of SSVEP is enhanced at the cost of introducing a small amount of high-frequency noise. The experimental results show that the TT recognition framework can significantly improve the recognition ability of the algorithms and the separability of extracted features. Its enhancement effect is significantly better than the traditional time-local covariance extraction method, which has enormous application potential.


Brain-Computer Interfaces , Humans , Evoked Potentials, Visual , Pattern Recognition, Automated/methods , Recognition, Psychology , Electroencephalography/methods , Algorithms , Photic Stimulation
12.
Article En | MEDLINE | ID: mdl-38598403

Steady-state visual evoked potential (SSVEP), one of the most popular electroencephalography (EEG)-based brain-computer interface (BCI) paradigms, can achieve high performance using calibration-based recognition algorithms. As calibration-based recognition algorithms are time-consuming to collect calibration data, the least-squares transformation (LST) has been used to reduce the calibration effort for SSVEP-based BCI. However, the transformation matrices constructed by current LST methods are not precise enough, resulting in large differences between the transformed data and the real data of the target subject. This ultimately leads to the constructed spatial filters and reference templates not being effective enough. To address these issues, this paper proposes multi-stimulus LST with online adaptation scheme (ms-LST-OA). METHODS: The proposed ms-LST-OA consists of two parts. Firstly, to improve the precision of the transformation matrices, we propose the multi-stimulus LST (ms-LST) using cross-stimulus learning scheme as the cross-subject data transformation method. The ms-LST uses the data from neighboring stimuli to construct a higher precision transformation matrix for each stimulus to reduce the differences between transformed data and real data. Secondly, to further optimize the constructed spatial filters and reference templates, we use an online adaptation scheme to learn more features of the EEG signals of the target subject through an iterative process trial-by-trial. RESULTS: ms-LST-OA performance was measured for three datasets (Benchmark Dataset, BETA Dataset, and UCSD Dataset). Using few calibration data, the ITR of ms-LST-OA achieved 210.01±10.10 bits/min, 172.31±7.26 bits/min, and 139.04±14.90 bits/min for all three datasets, respectively. CONCLUSION: Using ms-LST-OA can reduce calibration effort for SSVEP-based BCIs.


Brain-Computer Interfaces , Evoked Potentials, Visual , Humans , Calibration , Photic Stimulation/methods , Electroencephalography/methods , Algorithms
13.
J Neurosci Res ; 102(4): e25335, 2024 Apr.
Article En | MEDLINE | ID: mdl-38634155

Brain activity may manifest itself as oscillations which are repetitive rhythms of neuronal firing. These local field potentials can be measured via intracranial electroencephalography (iEEG). This review focuses on iEEG used to map human brain structures involved in olfaction. After presenting the methodology of the review, a summary of the brain structures involved in olfaction is given, followed by a review of the literature on human olfactory oscillations in different contexts. A single case is provided as an illustration of the olfactory oscillations. Overall, the timing and sequence of oscillations found in the different structures of the olfactory system seem to play an important role for olfactory perception.


Olfactory Perception , Smell , Humans , Smell/physiology , Brain/physiology , Olfactory Perception/physiology , Electroencephalography/methods
14.
Int J Psychophysiol ; 199: 112341, 2024 May.
Article En | MEDLINE | ID: mdl-38580171

The ability to select task-relevant information and filter out task-irrelevant information is critical to our success in daily goal-directed behavior. Researchers call this ability filtering efficiency and divide it into three cognitive processing stages: detection of distractors, initiation of filtering, and unnecessary storage. Although researchers have conducted more studies on ERP components related to filtration efficiency, there are few studies related to neural oscillations. Alpha oscillation activity is related to the active processing of information and the suppression of distractors. In the current EEG study, we used the change detection task with distracted items to examine whether alpha activity during filtering initiation reflects reactive suppression of distractors by manipulating memory load levels and the presence or absence of distractors. Results showed that, the presence of the distractors caused an increase in the degree of desynchronization of the alpha oscillations, and in the subsequent time, the alpha activity level returned to a level consistent with the absence of interference conditions. Phase synchronization between frontal and posterior brain regions in the upper alpha oscillations found no effects associated with distractors. Based on these results, we believed that the alpha activity during the filtering initiation phase reflected the active processing of distractors, but this may also be due to lower perceptual load of the target items. In addition, we observed a dominance effect of the right hemisphere in both time-frequency results and connectivity results. We speculate that this effect is related to the activation of the right ventral frontoparietal network.


Memory, Short-Term , Visual Perception , Humans , Visual Perception/physiology , Memory, Short-Term/physiology , Brain/physiology , Cognition , Electroencephalography/methods
15.
Article En | MEDLINE | ID: mdl-38625771

Scalp high-frequency oscillations (sHFOs) are a promising non-invasive biomarker of epilepsy. However, the visual marking of sHFOs is a time-consuming and subjective process, existing automatic detectors based on single-dimensional analysis have difficulty with accurately eliminating artifacts and thus do not provide sufficient reliability to meet clinical needs. Therefore, we propose a high-performance sHFOs detector based on a deep learning algorithm. An initial detection module was designed to extract candidate high-frequency oscillations. Then, one-dimensional (1D) and two-dimensional (2D) deep learning models were designed, respectively. Finally, the weighted voting method is used to combine the outputs of the two model. In experiments, the precision, recall, specificity and F1-score were 83.44%, 83.60%, 96.61% and 83.42%, respectively, on average and the kappa coefficient was 80.02%. In addition, the proposed detector showed a stable performance on multi-centre datasets. Our sHFOs detector demonstrated high robustness and generalisation ability, which indicates its potential applicability as a clinical assistance tool. The proposed sHFOs detector achieves an accurate and robust method via deep learning algorithm.


Deep Learning , Epilepsy , Humans , Electroencephalography/methods , Scalp , Reproducibility of Results , Epilepsy/diagnosis
16.
Chaos ; 34(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38558041

Hypersynchronous (HYP) seizure onset is one of the frequently observed seizure-onset patterns in temporal lobe epileptic animals and patients, often accompanied by hippocampal sclerosis. However, the exact mechanisms and ion dynamics of the transition to HYP seizures remain unclear. Transcranial magneto-acoustic stimulation (TMAS) has recently been proposed as a novel non-invasive brain therapy method to modulate neurological disorders. Therefore, we propose a biophysical computational hippocampal network model to explore the evolution of HYP seizure caused by changes in crucial physiological parameters and design an effective TMAS strategy to modulate HYP seizure onset. We find that the cooperative effects of abnormal glial uptake strength of potassium and excessive bath potassium concentration could produce multiple discharge patterns and result in transitions from the normal state to the HYP seizure state and ultimately to the depolarization block state. Moreover, we find that the pyramidal neuron and the PV+ interneuron in HYP seizure-onset state exhibit saddle-node-on-invariant-circle/saddle homoclinic (SH) and saddle-node/SH at onset/offset bifurcation pairs, respectively. Furthermore, the response of neuronal activities to TMAS of different ultrasonic waveforms revealed that lower sine wave stimulation can increase the latency of HYP seizures and even completely suppress seizures. More importantly, we propose an ultrasonic parameter area that not only effectively regulates epileptic rhythms but also is within the safety limits of ultrasound neuromodulation therapy. Our results may offer a more comprehensive understanding of the mechanisms of HYP seizure and provide a theoretical basis for the application of TMAS in treating specific types of seizures.


Epilepsy, Temporal Lobe , Epilepsy , Animals , Humans , Epilepsy, Temporal Lobe/therapy , Electroencephalography/methods , Acoustic Stimulation/adverse effects , Seizures/therapy , Hippocampus , Epilepsy/complications , Potassium
17.
Neurology ; 102(9): e209216, 2024 May 14.
Article En | MEDLINE | ID: mdl-38560817

BACKGROUND AND OBJECTIVES: High-frequency oscillations (HFOs; ripples 80-250 Hz; fast ripples [FRs] 250-500 Hz) recorded with intracranial electrodes generated excitement and debate about their potential to localize epileptogenic foci. We performed a systematic review and meta-analysis on the prognostic value of complete resection of the HFOs-area (crHFOs-area) for epilepsy surgical outcome in intracranial EEG (iEEG) accessing multiple subgroups. METHODS: We searched PubMed, Embase, and Web of Science for original research from inception to October 27, 2022. We defined favorable surgical outcome (FSO) as Engel class I, International League Against Epilepsy class 1, or seizure-free status. The prognostic value of crHFOs-area for FSO was assessed by (1) the pooled FSO proportion after crHFOs-area; (2) FSO for crHFOs-area vs without crHFOs-area; and (3) the predictive performance. We defined high combined prognostic value as FSO proportion >80% + FSO crHFOs-area >without crHFOs-area + area under the curve (AUC) >0.75 and examined this for the clinical subgroups (study design, age, diagnostic type, HFOs-identification method, HFOs-rate thresholding, and iEEG state). Temporal lobe epilepsy (TLE) was compared with extra-TLE through dichotomous variable analysis. Individual patient analysis was performed for sex, affected hemisphere, MRI findings, surgery location, and pathology. RESULTS: Of 1,387 studies screened, 31 studies (703 patients) met our eligibility criteria. Twenty-seven studies (602 patients) analyzed FRs and 20 studies (424 patients) ripples. Pooled FSO proportion after crHFOs-area was 81% (95% CI 76%-86%) for FRs and 82% (73%-89%) for ripples. Patients with crHFOs-area achieved more often FSO than those without crHFOs-area (FRs odds ratio [OR] 6.38, 4.03-10.09, p < 0.001; ripples 4.04, 2.32-7.04, p < 0.001). The pooled AUCs were 0.81 (0.77-0.84) for FRs and 0.76 (0.72-0.79) for ripples. Combined prognostic value was high in 10 subgroups: retrospective, children, long-term iEEG, threshold (FRs and ripples) and automated detection and interictal (FRs). FSO after complete resection of FRs-area (crFRs-area) was achieved less often in people with TLE than extra-TLE (OR 0.37, 0.15-0.89, p = 0.006). Individual patient analyses showed that crFRs-area was seen more in patients with FSO with than without MRI lesions (p = 0.02 after multiple correction). DISCUSSION: Complete resection of the brain area with HFOs is associated with good postsurgical outcome. Its prognostic value holds, especially for FRs, for various subgroups. The use of HFOs for extra-TLE patients requires further evidence.


Epilepsy, Temporal Lobe , Epilepsy , Child , Humans , Electrocorticography , Prognosis , Electroencephalography/methods , Retrospective Studies , Epilepsy/diagnosis , Epilepsy/surgery
18.
J Neurosci Res ; 102(4): e25325, 2024 Apr.
Article En | MEDLINE | ID: mdl-38562056

Brain states (wake, sleep, general anesthesia, etc.) are profoundly associated with the spatiotemporal dynamics of brain oscillations. Previous studies showed that the EEG alpha power shifted from the occipital cortex to the frontal cortex (alpha anteriorization) after being induced into a state of general anesthesia via propofol. The sleep research literature suggests that slow waves and sleep spindles are generated locally and propagated gradually to different brain regions. Since sleep and general anesthesia are conceptualized under the same framework of consciousness, the present study examines whether alpha anteriorization similarly occurs during sleep and how the EEG power in other frequency bands changes during different sleep stages. The results from the analysis of three polysomnography datasets of 234 participants show consistent alpha anteriorization during the sleep stages N2 and N3, beta anteriorization during stage REM, and theta posteriorization during stages N2 and N3. Although it is known that the neural circuits responsible for sleep are not exactly the same for general anesthesia, the findings of alpha anteriorization in this study suggest that, at macro level, the circuits for alpha oscillations are organized in the similar cortical areas. The spatial shifts of EEG power in different frequency bands during sleep may offer meaningful neurophysiological markers for the level of consciousness.


Electroencephalography , Sleep, Slow-Wave , Humans , Electroencephalography/methods , Sleep, Slow-Wave/physiology , Sleep/physiology , Sleep Stages/physiology , Polysomnography
19.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(3): 244-249, 2024 Mar 15.
Article Zh | MEDLINE | ID: mdl-38557375

OBJECTIVES: To investigate the effects of antenatal corticosteroid (ACS) therapy in pregnant women on the brain development of preterm infants using amplitude-integrated electroencephalography (aEEG). METHODS: A retrospective analysis was conducted on 211 preterm infants with a gestational age of 28 to 34+6 weeks. The infants were divided into an ACS group (131 cases) and a control group (80 cases) based on whether antenatal dexamethasone was given for promoting fetal lung maturity. The first aEEG monitoring (referred to as aEEG1) was performed within 24 hours after birth, and the second aEEG monitoring (referred to as aEEG2) was performed between 5 to 7 days after birth. The aEEG results were compared between the two groups. RESULTS: In preterm infants with a gestational age of 28 to 31+6 weeks, the ACS group showed a more mature periodic pattern and higher lower amplitude boundary in aEEG1 compared to the control group (P<0.05). In preterm infants with a gestational age of 32 to 33+6 weeks and 34 to 34+6 weeks, the ACS group showed a higher proportion of continuous patterns, more mature periodic patterns and higher Burdjalov scores in aEEG1 (P<0.05). And the ACS group exhibited a higher proportion of continuous patterns, more mature periodic patterns, higher lower amplitude boundaries, narrower bandwidths, and higher Burdjalov scores in aEEG2 (P<0.05). CONCLUSIONS: ACS-treated preterm infants have more mature aEEG patterns compared to those not treated with ACS, suggesting a beneficial effect of ACS on the brain development of preterm infants.


Infant, Premature , Pregnant Women , Infant , Infant, Newborn , Female , Humans , Pregnancy , Retrospective Studies , Electroencephalography/methods , Gestational Age , Brain
20.
Sci Rep ; 14(1): 7627, 2024 04 01.
Article En | MEDLINE | ID: mdl-38561365

This study aimed to investigate the effects of reproducing an ultrasonic sound above 20 kHz on the subjective impressions of water sounds using psychological and physiological information obtained by the semantic differential method and electroencephalography (EEG), respectively. The results indicated that the ultrasonic component affected the subjective impression of the water sounds. In addition, regarding the relationship between psychological and physiological aspects, a moderate correlation was confirmed between the EEG change rate and subjective impressions. However, no differences in characteristics were found between with and without the ultrasound component, suggesting that ultrasound does not directly affect the relationship between subjective impressions and EEG energy at the current stage. Furthermore, the correlations calculated for the left and right channels in the occipital region differed significantly, which suggests functional asymmetry for sound perception between the right and left hemispheres.


Hearing , Sound , Electroencephalography/methods , Auditory Perception/physiology , Acoustic Stimulation
...